

Envelop parameters for TPC DAM

Proposed KPP: demonstrate readout simulated data @ 1.56 Gbps x 600 fibers @ >99% LT

Timeline envelop. Cost ~ 0.5 M\$

Reminder: Full DAM system concept

Event Buffering and Data Data Aggregation Module (DAM): Compressor (EBDC): Rack server PClex16 card with multiple (≥ 25) 3-Gbps fiber IO that can host at 1x PClex16 cards Option 1: ATLAS FELIX + 2x 10 Gbps Ethernet port Example: Dell PowerEdge R830 Option 2:LHCb/ALICE CRU 12 cores, 1x10 GBps, ~ 6k\$ Option 3: build our own based on ALICE/ATLAS exp. 256 channels/iFEE Pad panels **Event Buffering and Data Aggregation** FEE **Data Compressor** Module (DAM) (EBDC) Trigger

MVTX Readout Workfest

Slow control system

Timing distributor

TPC

Buffer box
Jin Huang <jhuang@bnl.gov>

FPGA Choices

(a) PCie40.

FPGA Family Name	Xilinx	Altera	Xilinx	Altera	Xilinx	Altera	CRU	Xlinux Kintex Ultrascale	
	Virtex 6	Stratix V GX	Virtex 7	Arria 10 GX **	Virtex Ultrascale	Stratix 10	Requirements #		
Status		available	available	ES available	available	end of 2017		Available	
				from Q2'15					
FPGA part number	XC6VLX240T	5SGXEA7	XC7VX690T	10AX115	XCVU190	10SG280		XCKU115	
Used in	C-RORC	AMC40	MP7	PCIe40				BNL 711, FELIX v1.5 prototype	
Logic Elements / Cells [M]	0.241	0.622	0.693	1.15	1.9	2.8		1.451	
FFs [M]	0.3	0.939	0.866	1.7	2.14			1.3	
LUTs [M]	0.15	0.235	0.433	0.425	1.07			0.66	
18/20 Kb RAM Blocks	832	2560	2940	2713	7560	11721	1920 / 2560	4320	
Total Block RAM (Mb)	15	50	53	53	133	229	40 / 53	75.9	
≥ 10 Gb/s Transeivers	24	48	80	96	60	144	48	(48 input + 48 output fiber links in FELIX)	
PLLs	12	28	20	32	60	48		48	
PCIe x8, Gen3	2 (Gen2)	4	3	4	6	6		6	

 $^{\# \} TPC \ Detector \ is \ the \ majority \ user \ (\ > 70\%) \ of \ CRU \ boards. \ CRU \ requirements \ is \ measured \ against \ TPC \ detector \ specific \ logic \ occupancy.$

ATLAS group estimated 48x GBP unpacking and PCIe output use ~20% FELIX Resource

^{**} Altough the maximum number of links of the Arria10 family is 96 links, the FPGA equiping the PCIe40 board has only 72 links

ATLAS/FELIX BNL-711 PCIe Card

Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

- BNL-711 Board chosen for ATLAS FELIX project, and used in ATLAS phase I upgrade, which is projected to complete before sPHENIX.
- Readout for ATLAS Phase-I sub-system of Liquid Argon Calorimeter, Level-1 calorimeter trigger, New small wheel of the muon spectrometer

ATLAS/FELIX Card for sPHENIX?

Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

Main features for FELIX PCIe Card

- Design: BNL/Omega group, Layout: BNL/Instrumentation, Goal: multiple users.
- A large Kintex Ultrascale FPGA, 1.5 M Logical Cells (24x Logical Cells of FVTX FEM card)
- 48 bi-directional GBT link via two 48-F MTP connectors
- PClex16 Gen3, 101 Gbps demonstrated
- 2x DDR4 memory slots (v1.0, v1.5), removed v2.0
- TTC-timing input (v1.0, v1.5), timing mezzanine card (v2.0)

Timeline and availability:

- Current version: v1.5 prototype, can be ordered now
- Next version: v2.0 pre-production, design completed, layout on-going, expect available Oct 2017
- FELIX production system delivery expected end 2018 for ATLAS Phase-I upgrade. ATLAS needing 100+ card with various flavor of firmware depending on subsystem configurations.
- BNL/Omega group, Local expert expressed willing for help us to adapt FELIX in sPHENIX
 - Boards for initial evaluation test
 - Support firmware software development, timing mezzanine card design
 - The team is also help in possible use of FELIX card in proto-Dune.
 - The FELIX team is open for inputs in guiding the design to be more generic to various users.

FELIX v1.5 Card in test stand

Diagram & Rate

Live write up drafts online:

Rate estimation: https://docs.google.com/spreadsheets/d/1Q_uyf00_8pushSiYns29T_-ThIOqQaqpKbVS_LDqlAg/edit?usp=sharing

Data format: https://www.overleaf.com/read/wttbwnnyngwb

24 sectors, 144k Pads and 600 FEEs in total 1 sector, 25 FEEs per DAM for readout

Item	Rate Per unit				
	Unit	Count	Limit/Unit	Average/Unit	Max C./Unit
FEE SAMPA data	Gbps	4,800	1.28	0.20	0.51
FEE GBT fiber	Gbps	600	3.20	1.56	2.03
FPGA Input	Gbps	24	80.00	39.12	
Build hit - time table	Gbps	24	200.00	40.23	
After triggering	Gbps	24	200.00	11.47	
After clustering fitting	Gbps	24	101.70	5.73	
FPGA -> PClex16 -> DMA	Gbps	24	101.70	5.73	
Lossless Compression	Gbps	24	4.80	3.44	
Server output to 1008 network	Gbps	24	10.00	3.44	
Buffer box servers	Gbps	1	120.00	82.56	

- 24 FELIX provide bi-direction link to 600 FEEs, 144k pads
 - Using 48x 48-F cable directly connect FELIX to TPC, breakup to LC in TPC
 - $^{\circ}$ $\;$ Input data to FELIX: 10MHz zero-suppressed wavelets @ 940 Gbps total
- Custom FPGA firmware
 - Buffer wavelets and sort into clock buckets
 - When triggered, group 18us of data or 170 buckets into events, reduce output data rate by factor of ~4.
 - $^{\circ}$ Clustering and fitting: expect reduce data rate by factor of ~2
- On server CPU based compression then send to buffer box servers @ 80 Gbps

Recent works: FELIX v1.5 test stand

- Gain experience with operating a FELIX PCIe board
- Demonstrate 4 Gbps bi-directional optical link, FEE <-> FELIX PCIe board (8b10b encoding)
- Demonstrate top level FPGA design and resource counting
- Demonstrate FPGA -> PCIe -> DMA rate (Done. Already demonstrated by ATLAS group)

Xilinx Atrix-7 XC7A200T + 8x SFP

FELIX v1.5 PCIe card

Also in test stand:

- Kintex evaluator board
- Si5338 PLL
- 50m MTP fibers, etc.

Kintex -> Atrix SFP+ fiber links with RHIC clock delivery

- One of the feature of the design is to use FELIX distribution slow control and RHIC clock to 25x FEE.
- Use RHIC clock (~9.4 MHz) as base frequency. Multiply x14 as fiber clock + slow control data in via 8b/10b encoder
- Recover RHIC clock on FEE, and slow control data via 8b/10b decoder
- John Kuczewski (BNL, instrumentation): tested with expected RHIC clock frequency spread (due to ramp). Excellent error rate

Kintex -> Artix SFP+ fiber links

with RHIC clock delivery John Kuczewski (BNL, instrumentation)

Recovered "RHIC" clock: tracking input pattern

Downlink "eye" during ramping test:

TPC Outlook and possible use in MAPS

- The TPC group acquired v1.5 FELIX PCIe card to setup a test stand and evaluate DAQ feasibility. Plan to switch to pre-production cards end 2017. Meanwhile, we would also want to learn to CRU, prior to final decision on the readout cards.
- After Ming's request, a v1.5 FELIX PCIe card has been manufactured for MVTX.
- It makes sense to try pursuing the same system for MAPS+TPC readout, and share production batch, DAQ expertise and effort in timing distribution, card/server pool, event-building software development

Extra Information

DAM Plausibility diagram

Assuming 24x (DAM + EBDC) one for each TPC sector

24 sectors, 144k Pads and 600 FEEs in total 1 sector, 25 FEEs per DAM for readout

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q uYf00 8pushSiYns29T -ThIOqQaqpKbVS LDqlAg/edit?usp=sharing

Input stage

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q_uYf00_8pushSiYns29T_-ThIOqQaqpKbVS_LDqlAg/edit?usp=sharin

- Per DAM: ~25 FEEs, each send data in 1 fiber
 - Data format in minimal chunk = one cluster in one channel: 2x10 bit header (channel ID + timing + length) + 5x10 bit wavelet
 - Wavelet sampled timed to BCO (beam collision clock = 9.4 MHz)
 - Max continuous rate / fiber = 1.9 Gbps, Average continuous rate / DAM = ~1 Gbps x 25 = 24 Gbps (30 pad rows)
- Media: MTP fiber bundle, split to LC connector near detector. 8b/10b protocol?
- Downlink fiber send clock and slow control to FEEs. One DAM->FEE downlink fiber per FEE.
- Each FEE uniquely address by DAM ID (fixed by ID config in EBDC server) + DAM/FEE channel ID (fixed by cable mapping of DAM -> FEE)

BCO buckets

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q_uYf00_8pushSiYns29T_-ThIOqQaqpKbVS_LDqlAg/edit?usp=sharing

- FPGA are separated into 25 copies of DAM/FEE process channels, each handle one FEE input
- Separate clusters into buckets
 - Data format in minimal chunk = one cluster in one channel:
 2x10 bit header (channel ID + length) + 5x10 bit wavelet
 - Buffer long enough to allow transmission time spread, FVTX used 64 BCO buckets
 - Use internal memory on FPGA for BCO buckets storage
- Average continuous rate = 25 Gbps (30 pad rows)

BCO buckets data format

- 25 DAM channels each handle one FEE
- Each channel buffer clusters sorted in 64 BCO buckets, based on hit time of the first sample of cluster
- Require 25 (FEE) x64 (BCO) memory block or FIFO, each store one BCO buckets
- Byte aligned
- Overhead = 9x8bit / 5x10 bit = 144%

One BCO buckets per FEE per BCO Max 255 clusters

Throttling VS triggering

- 15kHz trigger + 170 BCO readout length (readout 18us data per trigger) → only need ~25% data from the input continues stream
- Two options

1 sector, 25 FEEs per DAM for readout

- Throttling: only record hits within 170BCO of the trigger and form a continuous data stream; no duplicated hits. **Data reduction to 25.5%**
- Trigger: for each trigger, readout a chunk of hits timed to the next 170BCO. Form sub-event and easy for analysis; but could duplicate hits in output data if two trigger comes within 170 BCO. Data reduction to 28.5%
- Since the trigger mode only increase data volume by 10% (relatively), I would prefer trigger mode instead of throttled mode for easy analysis and monitoring.
- Output average continuous rate = 7 Gbps (30 pad rows, reduced from 25 Gbps)

Event builder data format

- Each DAM channel assemble data for all 170 buckets.
 One DAM channel per FEE
- Add header and trailer
- Send to memory via PCIe engine simultaneously for 25 DAM channels?

FPGA -> CPU

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q_uYf00_8pushSiYns29T_-ThlOqQaqpKbVS_LDqlAg/edit?usp=sharing

- 1 sector, 25 FEEs per DAM for readout
- Merge data from 25 DAM/FEE channels and their multiple event builders to PCIe engine for output (need detail design)
- FIFO and DMA event building output to Server Memory
 - Media: PCle Gen3 x16
- Demonstrated rate limit for FELIX (PCIe x16) ~ 100 Gbps
- Average continuous rate = 7 Gbps (30 pad rows)

Data compression

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q_uYf00_8pushSiYns29T_-ThIOqQaqpKbVS_LDqlAg/edit?usp=sharin

24 sectors, 144k Pads and 600 FEEs in total 1 sector, 25 FEEs per DAM for readout

- Multithread compression
 - Algorithm: LZO on multi-event chunks
 - Demonstrated PHENIX data compression ratio = 60%, need to emulate for TPC data
- Estimated rate limit = 60 MBps / core x (10-20) core >= 4.8 Gbps
- Average continuous rate = 4.2 Gbps (30 pad rows)

Output stage

Rate estimation spread sheets:

https://docs.google.com/spreadsheets/d/1Q_uYf00_8pushSiYns29T_-ThIOqQaqpKbVS_LDqlAg/edit?usp=sharir

- 24 sectors, 144k Pads and 600 FEEs in total 1 sector, 25 FEEs per DAM for readout
- Output to event builder
 - Media: 1x 10 Gbps Ethernet ports per EBDC server
- Rate limit buffer box = 120 Gbps total? (3x HPSS rate)
- Average continuous rate for whole system= 4.2 Gbps/EBDC * 24 EBDC = 100 Gbps (30 pad rows)
 - Very close to 120 Gbps limit!

ALICE TPC DAQ

JINST 11 (2016) C03021, ALICE TDR

Figure 6.9: Schematic of the TPC readout system with the CRU as central part interfacing the front-end electronics to the trigger system, the DCS and the online farm.

ALICE CRU based on LHCb PCle40 card

- Prototyped by CPPM, Marseille, France
- Arria 10 family FPGA, (15K\$/chip?)
- 24 GBT input fibers [JINST 11 2016]
- PCle Gen3 x16 interface
- TTC-FTL accepting timing/trigger
- Cost 15-20 k\$ (need to be confirmed)

(b) PCIe40 Schematic.

LTU

(a) PCie40.

Our options: 10-50x (PCle card + server)

Data Aggregation Module (DAM):

PClex8 or x16 card with multiple (8-48x) GBT fiber IO

Option 1: LHCb/ALICE CRU

Option 2: ATLAS FELIX (see next talk)

Option 3: build our own based on ALICE/ATLAS exp.

Event Buffering and Data Compressor (EBDC): Rack server that can host at 1x PClex16 cards + 2x 10 Gbps Ethernet port

Example: Dell PowerEdge R830 2x12 cores, 2x10 GBps, ~ 10k\$

Jin Huang <jhuang@bnl.gov>

CRU diagram

SAMPA/STAR iFEE

Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

Sept 2016 cost estimate

Cost estimate (for production)

- Direct M&S cost for 100K channels is 1.1M FY16\$
- Cost for development is not included.
 - We assumed ~20-30% of this as M&S cost for development

Item	# of items	\$ per item	\$ all
SAMPA Chips	3200	\$44	\$140K
FEE cards	400	\$700	\$280K
DAM	50	\$6000	\$300K
Cables/fibers			\$100K
Power Supply	8	\$12000	\$100K
EBDC	50	\$3000	\$150K
Total			\$1.1M

c.f. STAR iFEE is \$150/card (64 ch., copper cable readout)

